Search results for "Partial derivative"
showing 10 items of 22 documents
Space‐time dynamical models
2008
Purpose – The purpose is to present a new formal approach based on a partial integro‐differential equation, the space‐time state transition equation (STSTE), and on a set of general equations with which space‐time dynamical models of complex systems, such as social systems and ecosystems, can be built.Design/methodology/approach – The STSTE provides the partial derivative of the density of a state‐variable with regard to time as a sum of time rates and space‐time rates. Time rates describe the dynamics of the system for each space‐point irrespectively of the other points, whilst space‐time rates describe this evolution as a consequence of the relation of each space‐point with a given set of…
A nonlinear algorithm for monotone piecewise bicubic interpolation
2016
We present an algorithm for monotone interpolation on a rectangular mesh.We use the sufficient conditions for monotonicity of Carlton and Fritsch.We use nonlinear techniques to approximate the partial derivatives at the grid points.We develop piecewise bicubic Hermite interpolants with these approximations.We present some numerical examples where we compare different results. In this paper we present an algorithm for monotone interpolation of monotone data on a rectangular mesh by piecewise bicubic functions. Carlton and Fritsch (1985) develop conditions on the Hermite derivatives that are sufficient for such a function to be monotone. Here we extend our results of Arandiga (2013) to obtain…
A remark on differentiable functions with partial derivatives in Lp
2004
AbstractWe consider a definition of p,δ-variation for real functions of several variables which gives information on the differentiability almost everywhere and the absolute integrability of its partial derivatives on a measurable set. This definition of p,δ-variation extends the definition of n-variation of Malý and the definition of p-variation of Bongiorno. We conclude with a result of change of variables based on coarea formula.
A Robustness Approach to Reliability
2012
Reliability of products is here regarded with respect to failure avoidance rather than probability of failure. To avoid failures, we emphasize variation and suggest some powerful tools for handling failures due to variation. Thus, instead of technical calculation of probabilities from data that usually are too weak for correct results, we emphasize the statistical thinking that puts the designers focus on the critical product functions. Making the design insensitive to unavoidable variation is called robust design and is handled by (i) identification and classification of variation, (ii) design of experiments to find robust solutions, and (iii) statistically based estimations of proper safe…
Instruction-based clinical eye-tracking study on the visual interpretation of divergence : how do students look at vector field plots?
2018
Relating mathematical concepts to graphical representations is a challenging task for students. In this paper, we introduce two visual strategies to qualitatively interpret the divergence of graphical vector field representations. One strategy is based on the graphical interpretation of partial derivatives, while the other is based on the flux concept. We test the effectiveness of both strategies in an instruction-based eye-tracking study with N = 41 physics majors. We found that students’ performance improved when both strategies were introduced (74% correct) instead of only one strategy (64% correct), and students performed best when they were free to choose between the two strategies (88…
Continuous numerical solutions of coupled mixed partial differential systems using Fer's factorization
1999
In this paper continuous numerical solutions expressed in terms of matrix exponentials are constructed to approximate time-dependent systems of the type ut A(t)uxx B(t)u=0; 0 0, u(0;t)=u(p;t)=0; u(x;0)=f(x);06 x6p. After truncation of an exact series solution, the numerical solution is constructed using Fer’s factorization. Given >0 and t0;t1; with 0<t0<t1 and D(t0;t1)=f(x;t); 06x6p; t06t6t1g the error of the approximated solution with respect to the exact series solution is less than uniformly in D(t0;t1). An algorithm is also included. c 1999 Elsevier Science B.V. All rights reserved. AMS classication: 65M15, 34A50, 35C10, 35A50
Finite-size effects of Kirkwood–Buff integrals from molecular simulations
2017
The modelling of thermodynamic properties of liquids from local density fluctuations is relevant to many chemical and biological processes. The Kirkwood–Buff (KB) theory connects the microscopic structure of isotropic liquids with macroscopic properties such as partial derivatives of activity coefficients, partial molar volumes and compressibilities. Originally, KB integrals were formulated for open and infinite systems which are difficult to access with standard Molecular Dynamics (MD) simulations. Recently, KB integrals for finite and open systems were formulated (J Phys Chem Lett. 2013;4:235). From the scaling of KB integrals for finite subvolumes, embedded in larger reservoirs, with the…
Implicit analytic solutions for a nonlinear fractional partial differential beam equation
2020
Abstract Analytic solutions in implicit form are derived for a nonlinear partial differential equation (PDE) with fractional derivative elements, which can model the dynamics of a deterministically excited Euler-Bernoulli beam resting on a viscoelastic foundation. Specifically, the initial-boundary value problem for the corresponding PDE is reduced to an initial value problem for a nonlinear ordinary differential equation in a Hilbert space. Next, by employing the cosine and sine families of operators, a variation of parameters representation of the solution map is introduced. Due to the presence of a nonlinear term, a local fixed point theorem is employed to prove the local existence and u…
Macroscopic expressions of molecular adiabatic compressibility of methyl and ethyl caprate under high pressure and high temperature
2014
The molecular compressibility, which is a macroscopic quantity to reveal the microcompressibility by additivity of molecular constitutions, is considered as a fixed value for specific organic liquids. In this study, we introduced two calculated expressions of molecular adiabatic compressibility to demonstrate its pressure and temperature dependency. The first one was developed from Wada’s constant expression based on experimental data of density and sound velocity. Secondly, by introducing the 2D fitting expressions and their partial derivative of pressure and temperature, molecular compressibility dependency was analyzed further, and a 3D fitting expression was obtained from the calculated…
Mappings of Finite Distortion:¶Discreteness and Openness
2001
We establish a sharp integrability condition on the partial derivatives of a mapping with L p -integrable distortion for some p>n− 1 to guarantee discreteness and openness. We also show that a mapping with exponentially integrable distortion and integrable Jacobian determinant is either constant or both discrete and open. We give an example demonstrating the preciseness of our criterion.